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ABSTRACT:

Segmentation is a fundamental problem in image processing and a common operation in Remote Sensing, which has been widely
used especially in Geographic Object-Based Image Analysis (GEOBIA). In this paper, we propose a new unsupervised segmentation
algorithm based on the Conditional Random Fields (CRF) theory. The method relies on two levels of information: (1) that comes
from an unsupervised classification with Fuzzy C-Means algorithm; (2) the 8-connected neighbourhood of a pixel. The algorithm
was tested on a WorldView-2 multispectral image, with 2m of spatial resolution. Results were evaluated using 6 quality measures,
and their performance was compared with other image segmentation algorithms that are usually applied by the Remote Sensing
community. Results indicate that the proposed algorithm achieved superior overall performance when compared others, despite
some over-segmentation.

1. INTRODUCTION

Image segmentation is a fundamental problem in Remote Sens-
ing and one of the most challenging tasks in digital image pro-
cessing (Körting, 2012). Image segmentation is a process that
splits an image, grouping its pixels by a similar feature - such
as the grey level - so that the line which splits the segments is,
ideally, an edge (Soille, 1999).

Segmentation algorithms should capture important groupings
or regions, which often reflect global aspects of the image and
should be highly efficient, running in nearly linear time based
on the number of pixels (Felzenszwalb, Huttenlocher, 2004).
Thus, the relationship among pixels and objects can be in-
terpreted as spatial context, according to Gurney and Town-
shend (Gurney, Townshend, 1983).

Besides, the ability to detect how a pixel is related to its sur-
roundings can be crucial in Remote Sensing. However, many
of the traditional algorithms available on commercial software,
and therefore frequently used for analysis, do not deal with
such relationship directly. This negligence may cause, in some
cases, problems in the definition of objects in the image and
consequently in the result of classification. Usually, multiscale
approaches are used to avoid different objects from incorrectly
form a region. This approach performs several segmenta-
tions at different levels, evaluating different types of interac-
tion between the pixels since the use of a single segmentation
in many cases is not effective (Johnson et al., 2015).

An alternative to this approach, is based on the Bayesian frame-
work. The algorithms based on this theory are commonly clas-
sified as energy-based segmentation algorithms. This approach
regained attention over the last decades, in virtue of computa-
tional developments. It is known due to its solid mathemat-
ical and theoretical background, which favours tasks like image
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segmentation where non-deterministic content, such as textures
and statistical noise, is still a challenge to the traditional meth-
ods (Vantaram, Saber, 2012). The techniques based on this ap-
proach deal directly with the neighbourhood of a pixel, which
in turn is the main reason why it makes them so interesting to
model the spatial context in images.

There are different probabilistic models such as Markov Ran-
dom Fields (MRF) that have been used for the segmentation of
Remote Sensing images over the last years. MRF is a powerful
stochastic tool that models joint probability distribution of the
image pixels. This type of modelling, has been widely used in
computer vision tasks due to its increased resistance to noise. In
Remote Sensing, the first applications of MRF occurred in late
1980’s (Geman, Geman, 1984, Kittler, Föglein, 1984, Mohn
et al., 1987). Recently it is still used for classification (Zhang
et al., 2018a, Zhang et al., 2018b, Fang et al., 2018, Borhani,
Ghassemian, 2014) and image segmentation. The main disad-
vantage of MRF is the need to explicitly model the distribution
of the likelihood and assume that the observed image data are
conditionally independent, given the labels. A feasible solu-
tion for this problem relies on the Conditional Random Fields
(CRF).

CRF is an undirected graphical models for structured predic-
tion, which are trained to maximise the conditional probabil-
ity of the outputs given the inputs (Lafferty et al., 2001). It
was first proposed to label text sequences and has been suc-
cessfully applied in computer vision tasks. CRF has character-
istics that make it possible to model multivariate outputs, tak-
ing advantage of a vast number of input features for prediction.
Thus, relaxing the assumption of conditional independence of
the observed data, it becomes suitable for image segmentation
task (Sutton et al., 2012, Zhang et al., 2015).

In this work, we propose an unsupervised pairwise energy-
based segmentation approach for high spatial resolution Re-



mote Sensing images. We combine well-known and simple
techniques to create this algorithm, aim at label disjoint regions
with similar characteristics.

2. IMAGE SEGMENTATION MODEL

Let I be a Remote Sensing image with N pixels and i each
pixel of I . The region that i belongs to is specified by a label
yi, which is modelled as a discrete random variable in the in-
terval yi = {1, 2, ., Y }, where Y is the number of regions that
compose the image I . The observed image features (i.e. colour
and texture) are a function of the labels.

In this work we exploited the Markovianity property of ran-
dom fields to condition the learning process of a pairwise en-
ergy model using a voting pool as in (Li et al., 2008, Yuan, Li,
2007). Models like this are a combination of two components;
a unary potential, that represents the likelihood of a label be-
ing assigned to a pixel i and a pairwise potential that provides
short-range contextual information, describes the compatibility
between the pixel under analysis and its neighbours.

Let X = {x1, x2, ..., xi} denote a set of observed values of the
pixels i and Y = {y1, y2, ..., yi} the set of labels. The objective
of the learning phase is to assign an optimal label y to each pixel
i, conditioned on observed data xi and xj and labels yj , for all
j in a small neighbourhood ηi, the voting pool. Given an image
I , a pixel i, ηi, that is the neighbourhood of the pixel i, and E is
the set of all pixel pairs:

Ei(yi, yηi , xi, xηi) = ψu(xi, yi) +
∑
i

∑
j∈ηi

ψij(xi, xj , yi, yj)

(1)

where the unary component ψu(xi, yi) is the cost of the pixel
i to receive the label yi, the pairwise components ψij(xi, xj)
computes the cost to the pixels i, j simultaneously and y is the
image. Once the energy is calculated, the label with the lowest
energy is applied to the pixel.

In our approach, when a pixel i is visited, a voting pool is
formed encompassing all y labels that are defined by the mor-
phological operation reconstruction (Section 3.1). The voting
pool holds the energies of a pixel for all possible labels. This
information is updated at each iteration using a deterministic
selection approach, which chooses the label corresponding to
the lowest energies value. This approach allows each pixel to
interact with all possible labels in a way that it can find its own
identity progressively.

2.1 Unary potential

The unary term in Eq. 2 corresponds to the negative log of the
posterior probability of any label yi, given observation xi. This
term only considers local features, therefore, the posterior prob-
ability of any local classifiers can be used. Despite the noise that
might be produced by this approach, it provides a good initial
understanding of the objects in the image. We chose the Fuzzy
C-Means (FCM) clustering algorithm, which assesses the dis-
placements between data and the centres of data groups with
some degree of pertinence. We use the posterior probability of
the FCM to compute the unary term as follows:

ψu(xi, yi) = − log(P (xi, yi)FCM ) (2)

2.2 Pairwise potential

The pairwise potential uses the label information to determine
how a pixel relates to its neighbours. This term - on our ap-
proach - is designed by the contrast-sensitive Potts model. This
potential considers the spectral features of pixels, therefore the
probability of them taking the same label is decreased. Usually,
the pairwise potential is defined as:

ψ(yi, yj , xi, xj , θψ) = θTφij
µ(xi, xj) (3)

where ψ is the pairwise potential that imposes the contextual
information provided by the 8-connected neighbourhood of a
pixel i, θTψij

is a matrix of parameters obtained during the train-
ing, µ(xi, xj) is a compatibility (Eq. 7) function that assesses
the similarities between two pixels (xi, xj).

To set θψpq is necessary a training phase that is prohibitive to
an unsupervised approach. However, Zhang and Jia. (2012),
proposed an adaptation to this function, in which the θψpq is
defined as 1.0. This scalar inside the pairwise potential re-
defines it, in a way that is solely dependent on the spectral
differences between adjacent pixels. This adaptation allows
the use of CRF without training, which enables the applica-
tion of this type of model on unsupervised approach. This ad-
aptation has been used in change detection and classification
tasks (Zhang, Jia, 2012, Lv et al., 2018).

Therefore, the pairwise potential used on this work can be ex-
pressed as follows:

ψ(yi, yj , xi, xj , θψ) = µ(xi, xj) (4)

µ(xi, xj) = { 0, if yi = yj 1− gij , if yi 6= yj (5)

The function gij(y) models the interaction between the neigh-
bouring pixels i and j measuring the difference in appearance
between them. To measure this difference, we use the squared
norm of the difference between the pixels.

gij =
(||xi − xj ||2)

2σ2
(6)

xi and xj are the spectral vectors representing the appearance
of the i and j pixels and σ is the similarity value defined by user.
With this function interaction within a neighbourhood is related
to the image data and encourages label coherence in adjacent
pixels.

3. SEGMENTATION ALGORITHM

As shown in Figure 1, the proposed algorithm, from here called
Unsupervised Contextual Segmentation (UCS), utilised a piece-
wise strategy to model the potential functions.

3.1 Clusters definition

In our approach, the number of clusters is defined based on a
set of operations of mathematical morphology that is used as
a pattern detector. The first stage of this process is high-pass



Figure 1. Image segmentation UCS segmentation method.

filtering, which obtains a normalised gradient magnitude im-
age. With this approach, it is possible to manipulate the weights
for each band, making it simple to highlight certain objects.
Moreover, only similar pixels in all bands of the image will ap-
pear as regional minima.

A common problem is that this approach may lead to an over-
segmentation since an object usually contain more than a single
minimum. To overcome this, we perform a merge of the re-
gional minima based on a similarity value. Thus, a group of
regional minima can be merged into a single label based on the
similarity value defined by the user, which is the only parameter
requested by the proposed algorithm. It is important to state that
the definition of seeds is completely unsupervised.

3.2 Clustering phase

Using the number of seeds defined by the regional minima, we
perform the fuzzy clustering with the FCM algorithm. This
classification returns two pieces of information; the probabil-
ity of each pixel to each seed, used in (Eq.2) and a labelled
image, which is used on the label compatibility function 5. We
assume that this image is an appropriate starting point for the
segmentation, despite that in certain cases it may not be, due to
their spectral similarity.

3.3 Inference

This procedure maximises the local conditional probabilities it-
eratively, given an initial labelling, in our case provided by the
FCM. Due to simplicity we use ICM algorithm. The energy
of each pixel i (Eq. 1) is computed on each iteration and and
the label with the lowest energy cost is selected, following a
winner-take-all approach. As an iterative procedure, it is per-
formed until it reaches stability. In the end, each pixel in the
image is assigned to the most likely object, resulting in a la-
belled image.

4. EXPERIMENTAL SETUP

Tests were conducted on a dataset of a WorldView-2 image of
São José dos Campos city, in Brazil. This high spatial resol-

ution image has 2 meters of spatial resolution and 8 spectral
bands, each one with 11 bits of radiometric resolution.

The segmentation results were evaluated by comparing the geo-
metries of resultant objects with 95 delineated objects, repres-
enting prominent features in the image, such as house rooftops,
small buildings, public squares, industrial warehouses, water
bodies and roads. For evaluation, the Precision, Recall and F-
measure metrics, were used. All are available on the Python
package Scikit-learn. Moreover, 3 metrics proposed by Delves
et al. (1992), that evaluates the degree of displacement between
segments (FITXY), size (FITN) and shape (Gshape) similarity
also were used to assess the regions created with the proposed
algorithm.

5. RESULTS

To analyse the performance of the UCS method, comparisons
were performed with the results obtained with commonly used
segmentation algorithms. To that, we perform tests with the
Multiresolution algorithm (MRS), (Baatz, Schäpe, 2000) im-
plemented on Definiens eCognition software (Körting et al.,
2013), the Meanshift algorithm, available on the Orfeo Toolbox,
and the Region Growing (RG) algorithm proposed by (Bins et
al., 1996), available on TerraView software.

The following tuning parameters for MRS algorithm were used:
45 scale, 0.3 shape and 0.7 compactness, and weight 2 for in-
frared bands and 1 for other bands. To perform the segment-
ation with Meanshift, the spatial radius was 30, 40 the range
radius and minimum region size, respectively. For the RG al-
gorithm it was used 30 as minimum size for the regions and
0.002 for similarity, which were the best in our tests with the
proposed dataset. For the UCS algorithm, the solely parameter
of the algorithm, the similarity, was set as 220.

The process of optimization was performed with the ICM al-
gorithm to reduce computation complexity. As can be observed
in Figure 2, the procedure despite been simple can achieve satis-
factory results even with a small number of iteration. However,
the performance is strongly dependent of the initial labelling.



Figure 2. Evolution of labelling during optimization.

Table 1. Average performance of the algorithms.

Metric MRS Meanshift RG UCS
Precision 0.80 0.76 0.75 0.77
Recall 0.78 0.74 0.76 0.78
F1-score 0.75 0.69 0.70 0.74
FITXY 0.96 0.95 0.95 0.96
FITN 0.87 0.83 0.84 0.88
Gshape 0.72 0.67 0.67 0.71

Figure 3 shows the segmentation produced by the algorithms
for some objects in our image. The segments (yellow line)
provided by the MRS and UCS were the best when compared
with the others and the reference (red line) at the first column.
In the first row, MRS had slightly better results than others. The
UCS produced a segment slightly bigger than the actual size,
similar to the one produced by Meanshift. The segment pro-
duced by the RG algorithm had the worst result, due to over-
segmentation.

In the second row, UCS produced a segment that was a little
bit bigger than its actual size, but had good agreement with its
shape. Similar to the MRS algorithm. The Meanshift produced
a good segmentation, despite its shape did not fit as good as
UCS and MRS. The RG algorithm produced a segment similar
to Meanshift, with a less fitted shape, but with a good agree-
ment.

In the third row, the proposed algorithm had the best perform-
ance than all others, with a strong agreement to the boundaries.
Others produced segments that grew beyond the reference. In
the fourth row, RG provided the best definition of the interest
object. All other algorithms grew beyond the reference bound-
aries.

Table 1 shows the average obtained by each metric analysed
for algorithms in all 95 reference regions. The UCS algorithm
achieved similar results to MRS, specially on Recall, FITXY,
FITN and Gshape. When compared to Meanshift and the RG
algorithms it was better in all metrics.

6. CONCLUSION

In this work, we described and evaluated an unsupervised seg-
mentation algorithm for high-resolution Remote Sensing im-
ages, based on Conditional Random Fields, the UCS algorithm.

Figure 3. From left to right: Original image with reference
polygon in red, MRS segmentation, Mean-shift segmentation,

Region Growing segmentation and UCS segmentation
algorithm.

We used 95 objects to evaluate its results, using visual assess-
ment and 6 metrics. Moreover, we compared the results against
the MRS, the Meanshift and the region growing algorithm pro-
posed by (Bins et al., 1996). The UCS results were superior to
Meanshift and the RG. When compared with MRS, it achieved
inferior results in Precision and F1-score. It indicates the power
of the proposed approach, opening possibilities for improve-
ment, with the integration of long-range contextual informa-
tion using a high-order model. Furthermore, it is important to
highlight, from the analyst perspective, the simplicity of the al-
gorithm, since our method requests only a similarity parameter.
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