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Abstract. Mapping Earth land use and cover changes is crucial to
understand agricultural dynamics. Recently, analysis of time series ex-
tracted from Earth observation satellite images has been widely used to
produce land use and cover information. In time series analysis, clus-
tering is a common technique performed to discover patterns on data
sets. In this work, we evaluate the Growing Self-Organizing Maps al-
gorithm for clustering satellite image time series and compare it with
Self-Organizing Maps algorithm. This paper presents a case study using
satellite image time series associated to samples of land use and cover
classes, highlighting the advantage of providing a neutral factor (called
spread factor) as a parameter for GSOM, instead of the SOM grid size.
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1 Introduction

Technologies and methods of remote sensing and digital image processing play
a crucial role in the identification, mapping, assessment and monitoring of land
use and cover changes. In the last years, the use of remote sensing image time se-
ries analysis to produce land use and cover information has increased greatly [6].
Bi-temporal or traditional change detection approaches are commonly used to
detect complex underlying processes, but time series derived from Earth obser-
vation satellite images has been used as an alternative to facilitate this task [10].

In order to classify Earth observation image time series to produce land
use and cover change maps, machine learning methods such as Support Vector
Machine (SVM) and Random Forest (RF) have been used [11]. Most of these
methods are based on supervised learning algorithms, requiring a training step
that uses labeled land use and cover samples. A crucial challenge on this task is
the selection of representative samples to obtain a good classification accuracy.

To better select land use and cover samples from satellite image time series,
Santos et al. [13] propose a method based on Self-Organizing Maps (SOM) neu-
ral network [8] for time series clustering. Such method estimates the land use
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and cover samples quality from the satellite image time series clusters created
by SOM.

Despite its advantages, SOM has a characteristic that limits its potential.
It uses a predefined and fixed network architecture in terms of number and
arrangement of neural processing elements. Simulations have to be run several
times on different network sizes to find an appropriate network structure [5].
This work aims to contribute to land use and cover research area by validating
an approach that avoids this additional parameter. Growing SOM (GSOM) was
originally proposed to address the SOM characteristic of predetermining the map
size [1]. This paper evaluates GSOM as an alternative to traditional SOM for
satellite image time series clustering.

2 Self-Organizing Map (SOM)

A Self-Organizing Map (SOM) is an unsupervised neural network. SOM maps a
high dimensional space onto a low-dimensional space preserving its neighbour-
hood topology. SOM is composed by input and output layers, with the latter
generally being a two-dimensional grid.

Each element of a grid is called neuron. An important property of SOM is that
the neurons are organized in a way that they maintain a similar neighbourhood,
that is, neurons that have similar characteristics are close in the output layer.
Figure 1 shows the structure of SOM.

Fig. 1. SOM Structure

Each neuron j has a n-dimensional weight vector wj = [w1, . . . , wn] associ-
ated to it. An input x(t) = [x(t)1, . . . , x(t)n] is associated to most similar neuron
to it through distance metrics, as Euclidean distance. The distance Dj is com-
puted between a input vector and each neuron j for all the neurons in the output
layer (equation 1).
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Dj =

N∑
i=1

√
(x(t)i−wj)2. (1)

Once we have with all distances between a input and all neurons, the mini-
mum distance is determined the Best-Matching-Unit (BMU), i.e. the neuron db
with weight vector closer to x(t) (equation 2):

db = min {D1, . . . , Dj} . (2)

The BMU and its neighbours within a radius r must be updated. The weights
are adjusted to increase the similarity with the input vector, the update is
given by:

wj(t) = wj(t)+α(t)× hb,j(t)[x(t)i−wj(t)], (3)

In equation 3, α(t) is the learning rate, set as 0 < α(t) < 1 and hb,j is a
neighbourhood function. The SOM mapping ends when all input vectors are
presented to output layer. During each time, the α(t) must be reduced and the
neighbourhood function reduce the radius of the neighborhood. There are several
ways to reduce the value of α(t) and the radius of the neighbours. They can be
found in [9].

3 Growing SOM

Growing SOM (GSOM) is an alternative to traditional SOM for satellite image
time series clustering. It was originally proposed to address the SOM require-
ment of predetermining the map size [1]. SOM attempts to fit a data set into
a predefined structure by self-organizing its node weights as well as possible
within its fixed borders, while in GSOM the network borders are expandable,
generating new nodes whenever needed to expand the network outwards.

3.1 GSOM Algorithm

The GSOM is parameterized by a spread factor, a data dimensionality neutral
factor. It can be used as a controlling measure for generating maps with dif-
ferent sizes, without previous knowledge about the dataset number of samples
or attributes. The GSOM learning algorithm has three phases:

Initial phase: At the initialization phase, GSOM network starts with four neu-
rons with randomly assigned weight vectors. All the initial neurons are
boundary nodes and have opportunity to grow. In Figure 2, the four ini-
tial neurons are connected with lines and the available positions are shown
via dashed circles.
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Fig. 2. Initial GSOM with four neurons. Source: [14]

Growing phase: At this phase, the time series data are presented to the net-
work. The weight vector that is closest to the input vector mapped (the
winner neuron), is selected based on a distance function. The winner neuron
accumulative error is calculated according to a distance function between
the input vector and the winner neuron weight vector. This error indicates
the distance between the input vector and the weight vector of neurons.
When the accumulative error of a neuron exceeds a growing threshold (cal-
culated based on the spread factor), and the candidate neuron is on the grid
boundary, new neurons are added in the available free positions around the
candidate neuron in the grid, as showed on Figure 3. If the winning neu-
ron is not on the grid boundary, the accumulated error of the neighbors are
updated according to the winner distance, giving the non-boundary nodes
some ability in initiating node growth.

Smoothing phase: In order to fine-tune the weight vectors and to improve the
map smoothness, a smoothing phase is applied after growing [14]. No new
nodes are added during this phase. The intent is to smooth out any existing
quantization error, mainly in the nodes grown at the growing phase latter
stages [1]. The smoothing phase stops when the nodes error values in the
map become very small.

Fig. 3. New node generation from the network boundary. Source: [1]
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Depending on the clusters present in the data, the GSOM map generated by
this process develops into different shapes. The GSOM shape represents the data
grouping, and therefore, such grouping has a better opportunity of attracting
the user attention for further investigation [1].

3.2 GSOM customization for satellite image time series

In this paper, we propose minor changes in the GSOM described by Alahakoon
et. al. [1]. These changes aim to fit the algorithm to work with satellite image
time series.

During the network weights adaptation, the described learning rate states
that it needs to be a function that gradually takes higher values as the map
grows and the number of nodes becomes larger [1]. The suggested function is
described by equation (1) with R = 3.8, and n(t) is the number of neurons on a
given iteration t.

(
1−R
n(t)

) (4)

The use of this learning rate function resulted on a classification accuracy
decrease. In order to improve the accuracy, this function was replaced by the
function described by equation (2), that gradually takes minor values as the
number of iterations increase:

e(
−iteration
epochs ), (5)

with iteration representing the current iteration number and epochs representing
the total amount of epochs.

Alahakoon et. al. [1] states that the GSOM starting neighborhood selected
for weight adaptation is smaller compared to the SOM, and weight adaptation is
carried out with reducing neighborhood until neighborhood is unity. But a func-
tion for initializing and reducing the neighborhood influence during the growing
and smoothing phase is not provided. To satisfy these requirements, after several
tests, we defined the neighborhood influence as showed by Equation (3):

e
( −d
2×σ2

)
, (6)

σ = ini× e(
−iteration
epochs ), (7)

where ini is the initial neighborhood influence, iteration is the current iteration
number, and epochs is the total amount of epochs. On all GSOM executions
used in this work, the initial neighborhood influence was configured as 0.6.

4 Case study: SOM x GSOM comparative

In order to check the accuracy of GSOM for satellite image time series cluster-
ing and to compare it with SOM, we implemented both SOM and GSOM in
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Python [12], with the changes proposed in this paper. We then executed a case
study using the same time series data set described in Santos et. al. [13]. In this
case study, we applied both Python algorithms to this data set and compare
the results.

4.1 Data set

The satellite image time series data set used in our case study is shown in Figure
4. This data set is composed by 2215 ground samples of land use and cover
classes, including natural vegetation and agricultural, for the Mato Grosso state
in Brazil. These samples refer to nine distinct land use and cover classes: (1)
Cerrado, (2) Pasture, (3) Forest, (4) Soy-Corn, (5) Soy-Cotton, (6) Soy-Fallow,
(7) Soy-Millet, (8) Fallow-Cotton and (9) Soy-Sunflower.

Each sample has a spatial location (latitude and longitude), start and end
date that corresponds to agricultural year (from August to September) and the
corresponding sample class label. For each sample spatial location, we got the
time series associated to that location or pixel from a satellite image collection
ordered in time, as shown in Figure 4. In this work, we used satellite images
of the MODIS (Moderate-Resolution Imaging Spectroradiometer) sensor of the
NASA satellite Terra, including its product MOD13Q1. Each time series has
multiple attributes that was generated by EVI, NDVI, NIR and MIR attribute
concatenation. These ground samples were collected by [11].

Fig. 4. Satellite image time series data set associated with land use and cover samples.
Source: [4]
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4.2 Network topology

SOM uses a fixed network architecture in terms of number and arrangement of
neural processing elements which have to be predefined. To better estimate the
SOM network size, a preliminary study about the number of attributes, classes
separability and number of data samples needs to be done. On the other hand,
GSOM requires only a spread factor as an input parameter. The spread factor
is a neutral number between 0 and 1 that defines how much the network needs
to grow.

Figure 5 shows the networks create by SOM (using a fixed 25 x 25 grid)
and GSOM (using a spread factor 1 and number of iteration 15; 10 iterations
for growing and 5 iterations for smoothing). Both algorithms achieved similar
classification accuracy, but with different network topologies. In the SOM case,
as the grid size is always prefixed, the cluster distribution can differ, but the
grid will always have the same size. On the other hand, in the GSOM case, we
can observe the grid growing to fit the data.

Fig. 5. SOM x GSOM network topology.

4.3 Performance

Trying to approximate SOM classification accuracy, several GSOM running ex-
periments were made, testing different learning rates, spread factors and number
of iterations. We noticed that, for the given data set, the GSOM map increased
significantly on the number of neurons between iterations 1 and 5. Between it-
erations 6 and 10, the map had a small growing of the neuron number. After
iteration 11, we faced almost no growing. Analyzing the smoothing phase, we
noticed that after 5 iterations, the difference between the neuron weights after
each iteration were above 0.001. This facts lead us to fix the number of iterations
on growing phase in 10, and the number of iterations on smoothing phase in 5.
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As the SOM algorithm has a fixed grid, each iteration takes approximately
the same time to run. On the GSOM growing phase, the increasing number of
neurons implies on variable time spent on each iteration. Figure 6 illustrates
the time spend by SOM (with 25 x 25 fixed grid) and GSOM parametrized
with 10 Growing iterations and 5 Smoothing iterations. Both algorithms were
executed 10 times, using the same learning rate and the same neighborhood
update functions.

Fig. 6. SOM x GSOM performance comparison.

4.4 Cluster accuracy

After the unsupervised clustering provided by SOM, each neuron is analyzed,
and the samples associated to this neuron are counted. All neurons used by SOM
are labeled, using the label of the majority samples associated to it. After that,
we are now able to check the accuracy of each neuron, and consequently, the
whole map accuracy.

In order to compare the cluster accuracy, the same implementation of SOM
and GSOM algorithms were executed 10 times, using the same learning rate and
the same neighborhood update functions. As the Python implementation slows
down the overall solution performance, only 15 iterations of each algorithms were
ran. Before that, several GSOM executions were ran in order to generate a grid
map with almost the same neurons quantity of a 25 x 25 SOM. The results are
showed on Table 1. We noticed that, besides a small classification increment,
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GSOM presents significant results of +11.7% and +14.5% on Fallow-Cotton and
Soy-Sunflower clustering respectively.

Table 1. 15 SOM iterations x 15 GSOM iterations - Accuracy for each cluster.

Cluster SOM Accuracy GSOM Accuracy GSOM – SOM

Cerrado 96.4 97.6 1.2
Fallow-Cotton 84.1 95.8 11.7
Forest 98.4 98.4 0.0
Pasture 88.9 93.8 4.9
Soy-Corn 86.1 87.2 1.1
Soy-Cotton 91.1 93.9 2.8
Soy-Fallow 99.9 100.0 0.1
Soy-Millet 82.1 85.9 3.8
Soy-Sunflower 70.3 84.8 14.5

Total Accuracy 90.0 92.8 2.8

In the case study provided by Santos et. al. [13], the best classification sce-
nario was obtained with the time series presented to a SOM parameterized with
grid size = 25 x 25, learning rate = 1 and number of iteration = 100. The SOM
implementation used in this experiments was the Kohonen R package [15]. It
provides the original SOM functionality with good performance due to its Rcpp
implementation [3]. The use of C++ code mixed with R code provides a sig-
nificant reduction on the algorithm running time, allowing an increase on the
number of iterations without a huge impact on the overall execution time. After
100 iterations, the overall classification accuracy was 93%.

The same time series attributes were concatenated and presented to a GSOM,
parameterized with spread factor = 1, learning rate = 1 and number of iteration
= 15 (10 iteration for growing and 5 iteration for smoothing). The overall cluster
accuracy of GSOM was 93%. The cluster accuracy for each cluster is presented
in Table 2. We can notice that, despite of a small classification decrease on
Fallow-Cotton and Pasture clusters, GSOM presents a significant increment of
the Soy-Sunflower clustering accuracy of +11.7%. Also, the overall sample cluster
was pretty similar and stated as 93.0% for both algorithms.

5 GSOM Neighborhood Analysis

A relevant SOM property that needs to be validated during the GSOM tests is
the neighborhood topography maintenance. On a regular SOM, similar satellite
image time series are grouped into nearness neighborhoods, even if these time
series are labeled as different classes. The distribution on the SOM grid over
the iterations tends to cluster satellite image time series of a specific sample on
the same closer neighborhood. On the specific case of satellite image time series
associated to land use and cover ground samples, the neighborhood maintenance
in the clustering process is useful to identify sampling outliers.
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Table 2. 100 SOM iterations x 15 GSOM iterations - Accuracy for Each Cluster.

Cluster SOM Accuracy GSOM Accuracy GSOM – SOM

Cerrado 97.3 98.2 0.9
Fallow-Cotton 85.7 82.3 –3.4
Forest 99.3 98.5 –0.8
Pasture 97.3 94.5 –2.8
Soy-Corn 84.0 84.4 0.4
Soy-Cotton 95.5 95.2 –0.3
Soy-Fallow 100.0 100.0 0.0
Soy-Millet 90.3 88.9 –1.4
Soy-Sunflower 76.9 88.6 11.7

Total Accuracy 93.0 93.0 0.0

In this case study, we can conclude that GSOM also keeps this property, as
shown in Figure 7. The map highlights the nearest neighbors of Neuron 1 (N1).
We also point out some random distant neighbors in blue (N593, N607, N610,
and N615). Analyzing the distance between the weight vectors of Neuron 1 and
the weight vectors of the nearest and some distant random neighbors, we can
notice that the distance between the neuron weights grows as we move away
from the comparing source. We can visually inspect the time series generated by
each of this neurons weights, to check the distance between the nearest neighbors
and the distant ones, as shown in Figure 8.

The sum of the difference between Neuron 1 weights of its nearest neighbors
is 26.94. As we move away from Neuron 1, this distance grows. As an example,
the distance between the selected distant random neurons weights and Neuron
1 weights is 57.15. These distances are summarized on Table 3. This property
was analysed for other neurons in the map and similar results were found.

6 Final Remarks

For the given satellite image time series clustering problem, on the given data
set (Mato Grosso State, Brazil vegetation ground samples), GSOM seems to be
a suitable alternative to SOM. After small customization and adaptation, the

Table 3. Distance between Neuron 1 weights and its nearest/farther neighbors.

N1 - Nearest Distance N1 - Farther Distance

N1 - N0 7.27 N1 - N593 14.80
N1 - N3 5.67 N1 - N607 16.43
N1 - N5 6.28 N1 - N615 13.95
N1 - N4 7.72 N1 - N610 11.97

Neighborhood Distance 26.94 Neighborhood Distance 57.15
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Fig. 7. GSOM grid sample extract - neighborhood analysis.

Fig. 8. Neighborhood Analysis - Nearest x Random Distant Neighbors.

GSOM generated map grew as expected, reaching the same amount of neurons
of the equivalent SOM, but with a different network topology. GSOM also keeps
an important characteristic of SOM, the neurons neighborhood influence.

The cluster accuracy reached by GSOM was similar to the equivalent SOM.
It also had a small advantage on the overall clustering time, thanks to its growing



12 R. S. S. Adeu et al.

phase, when the neuron number is smaller than SOM. We were also able to test
the main GSOM characteristic that initiates this work, which was the capability
of clustering the dataset without specifying the grid size. The Spread Factor
usage was a simple and effective task, allowing users without previous algorithm
knowledge to cluster the data.

The source code used in this work and the dataset files are available on
GitHub [7]. The current implementation is a prototype, that will be evolved in
order to become a consolidated product in the future. Future works also include
applying the GSOM algorithm to other land use and cover time series datasets,
in order to confirm the benefits showed on the experiment presented in this work.
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